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1. INTRODUCTION

Certain nonlinear problems of accelerator physics are both important for
successful operation of accelerators and interesting as problems in their
own right. This review attempts to illustrate both of these aspects. Since
many readers are assumed to have little technical knowledge of accel-
erators, we simplify (even oversimplify) in the interest of suppressing
unessential complication. We concentrate instead on features that are
legitimately motivated by accelerator performance requirements.

No systematic attempt is made to survey accelerator experience as
an observational “laboratory” in which curious behavior predicted by
nonlinear mechanics is to be sought, though a case can be made that such
study is justified. Unfortunately, as a theme, “nonlinear” is about as
unifying as “bizarre” would be. Fortunately though, a few of the most
important effects in accelerators are well described by methods known in
other areas of physics or mathematics (typically their development has
been independent.) To make this review of more general interest, such
aspects are stressed in preference to uniquely accelerator physics issues.

In the interest of making the paper self-contained, a discussion of accel-
erator essentials is given in Section 2. As well as establishing terminology,
a basis is established for concepts like transfer maps, concatenation, and
Liouville’s theorem, though comments on them are deferred to later
sections. Section 3 forms the best example of the sort described in the
previous paragraph. Equations first solved in an entirely mathematical
context are applied to the analysis of an accelerator containing precisely
one nonlinear element. The results will be referred to repeatedly in the
sequel. A method of exact solution is described that illustrates essential
nonlinear features and that will serve as a basis for discussion of more
complicated modern methods. The important and interesting problems of
resonant extraction and resonances in general are treated largely as a
specialization of this problem in Section 4. Again the description of accel-
erator behavior can be compared with descriptions used in other areas.

The following sections are more technical and less explicit, relating back
where possible to the previous example. Included is discussion of nearly
linear behavior, which though less bizarre is probably more important for
accelerator design than is the potentially catastrophic large amplitude
behavior. Some other modern areas and methods are also described. Other
authors would have given at least one of these areas far greater prominence.
For example, the entire subject can be formulated in Hamiltonian terms,
or in terms of the Krylov-Bogoliubov method.

The problem of beam-beam interactions is discussed in Section 6. Of
the problems discussed this is the most important, at least as a mechanism
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that limits performance of colliding-beam facilities. It has been the object
of intense study, experimentally, theoretically, and numerically. If this
article has a unifying theme it is to explain, in as simple terms as possible,
ideas useful in the analysis of this problem.

Problems of the collective motion of the essentially infinite number of
particles circulating in an accelerator are perhaps the most challenging,
important, and difficult faced in accelerator physics but they are not
discussed in this review.

Regrettably, since the publication of research in accelerators has been
spotty, it is necessary to refer to laboratory reports that are not readily
available. Without claiming to be systematic, references to review-type
articles are also given. Since most of the results have been derived inde-
pendently by different authors using different methods, the chronology is
confusing. There are several useful general references (1-4).

2. ACCELERATOR ESSENTIALS
2.1 Deflection by Thin Elements

Consider a particle of mass m and charge e traveling approximately along
the s axis of a locally Cartesian x, z, s coordinate frame through a purely
magnetic element of length L. The field is assumed to be two dimensional,
independent of s. The most general field of this sort can be expanded into
polynomials in x and z according to
M
L(B,+iB,) = LB, Y, (b,+ia,)(x+iz)". 1.
n=0

Any accelerator can be broken into elements of this sort. To simplify
this review, and without much loss in generality, all elements are treated
as “thin.”” This is accomplished by allowing the length L to approach zero
while holding the “field integrals LB, and LB, finite. This may entail
artificially breaking up into shorter lengths elements that are actually long.
The particle deflection in passing through such a field is governed by the
equation

dv/ds = ¢*/Edt/dsdp/dt = (c*/E)(e/v)v x B, 2.

where the quantities p, E, v, and ¢ have their usual meanings.
In passing through this element the particle will suffer an impulsive
deflection (a kink) given by

Av,fv= —B,Lelp=F, .
Avjv=BLefp=F, 4,
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Table 1 “Forces” exerted by standard elements, and common notation for the coefficients

n R, I, d, b, F, F,
Horizontal bend 0 1 0 0 Ab, — A, 0
Vertical bend 0 1 0 A6, 0 0 A8,
Erect quadrupole 1 x z 0 q —gx qz
Skew quadrupole 1 x z g - 0 q2 g.x
Erect sextupole 2 x—z?  2xz 0 52 SiE*—xH)2 Sxz
Skew sextupole 2 x2—z? 2xz §,2 0 Syxz S,(x*—z%/2

The longitudinal velocity component v, will also be altered; it can be
worked out from the requirement that v remain constant in a magnetic
field.

The most important accelerator components can be identified with the
leading terms in the expansion Equation 1. Introducing the notation

a:n b;, = (LBOe/p)am bn 5.

one has

M
Fx = z (—“b;Rn+a;In)

n=0 6.
M
F,= Y (b,1,+a,R,),
n=0
where
(x+iz)" = R,+il,. 7.

Examples of the leading terms in these expansions are given in Table 1.
For a circular accelerator it is the horizontal bends A6, that guide the
particle. By defining a central closed orbit and letting x and z be deviations
from that orbit, the leading deflections are due to quadrupoles, which we
will assume are centered on the closed orbit. Since these forces are linear in
x and z their effect is usually represented in matrix notation;

(-, 06 .
(1= DE) .

which represents propagation from point 1 just before the quadrupole to
point 2 just after it. The prime stands for d/ds and the normally extremely
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good “paraxial” approximation
VR, 10.

has been made.

2.2 Linear Lattice Design

Most of accelerator design is based on the paraxial approximation and the
resultant linearized equations. In preparation for the main topic of this
review, namely the subsequent nonlinear terms, it is important to under-
stand the conventional linear formalism. This is called “optics” since it is
no different from the geometric optics of light, using ordinary lenses.

As well as accounting for deflections in the lenses it is necessary to
describe propagation through field-free drift spaces. For length / one has

(f)z - ((1) 1[> (;). 1.

Figure 1 shows the basic FODO cell on which most accelerators are based.
(FODO stands for focus-drift-defocus-drift.) Neglecting the dipoles and
sextupoles for now, the linear elements can be “concatenated” by matrix
multiplication to obtain the “transfer matrix”” M 21, Which relates the state

vector X, = (x,x"), at the end of the cell to the state vector X ; at the
beginning,

X 2= M 2 lX e 1 2
22— 2 e g2
Diool Sextu-
pole pole Quadru-

\ A
SN N \

-q
SH Sv

Figure I Dimensions, magnetic elements, and strength parameters for a FODO accelerator
cell.

H
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Itis

_(1 0)(1 1)(1 0>(1 1>(1 0) 13
M“_—q1012q101—q1 '
__( cos 2¢ ﬂﬁn2¢>
~ \ —sin2¢/f cos2¢

where
¢ =sin"'lg;  B=[1+Ig)/1—Ig]"/q. 14.

This special case has been worked out both as an example and because
it gives an excellent description of most sections of most accelerators. But,
in greater generality, in the linear approximation, the transverse coordinate
x will execute a “betatron oscillation” satisfying an equation of motion

d%x/ds?+ K(s)x = 0. 15.

The “focusing function” K(s) can represent arbitrary variation of the
focusing as a function of the longitudinal coordinate s, including thin
lenses, in which case K(s) would be a sum of delta functions.

There is a method of solving Equation 15 that resembles the WKB

method, but is exact. It is to assume two solutions of the form
x4(s) = aw(s) exp[ + Y (s)], 16.

where a is an arbitrary constant factor. It is also customary, and consistent
with the usage in Equation 14, to define the so-called beta function accord-
ing to

w(s) = BY(s). 17.
From Equation 16 the so-called pseudo-harmonic solution
x(s) = aP'*(s)cos[y () — Y (sy)] 18.

can be constructed. Substituting it into Equation 15 and demanding inde-
pendence of (s,) one obtains

BYY =0 19.
2BB//_B/2_4B2¢/2_4ﬂ2K(S) =0. 20.

Integrating Equation 19, and making a conventional choice for the inte-
gration constant, yields

¥ =1/B, ' 21.
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which can be integrated to give
Y(s) = f ds/B(s)- 22.

Further, y’ can be eliminated from Equation 20 using Equation 21. For a
linear equation like Equation 15, propagation from s, to s, can be described
by a transfer matrix

C, S
M, =< 2 S,“> 23.
21 21

where C,, = C(s,,$)) is that “cosine-like” solution having unit value and
zero slope at s, and S, is the “sine-like” solution having zero value and
unit slope at the same point. They are given by

Cy = (wy/wy)cos iy —wow) sin,, 24.
821 = wyw;, sin ¥y, . 25.

where o) = Y, — ..
Especially important is the situation in which s,—s, is equal to the
circumference C of the machine, as K(s) is necessarily periodic

K(s+C) = K(9). 26.

(A refinement that we do not pursue here is that, if the machine has “super-
periodicity,”” then Equation 26 may also hold for sub-multiples of C.)
When subjected to this periodicity condition, Equation 15 is known as the
Hill equation. It is then sensible and possible to demand that B have the
same periodicity, which with Equation 20 fixes it uniquely as a function
of 5. The transfer matrix around the whole machine is given by

M(s) = <COS—” )Iso; (s?ns;ltn ’ cosﬂfj)—sztnsﬁl u)’ 27,
where, comparing with Equations 24 and 25 _

a(s) = —ww' = —f'(5)/2 28a.

By—a® =1 28b.

p= ff;ds/ﬁ(s) = 2nQ. 28c.

From Equation 28b it can be seen that the determinant of M(s) is equal
to 1-—a feature discussed below. The “tune” Q defined in Equation 28c.
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which according to Equations 18 and 21 is the phase advance divided by
27, is the number of oscillations in going once around the machine.

2.3 Sources and Effects of Nonlinearity

Nonlinear forces are present in accelerators both intentionally and unin-
tentionally. The latter result when magnetic elements that would ideally
be pure dipoles or pure quadrupoles have, as they are actually constructed,
field non-uniformities requiring further terms in the expansion Equation
1 to give an adequate representation of the field. This source of nonlinearity
has become relatively more important as smaller coil diameters have been
required for reasons of economy. For the Superconducting Super Collider
(5), this source is expected to be dominant, even though the error terms
appearing in Equation 1 can be held below one part in a thousand, or even
better with extreme care in the manufacturing process. It is because there
are thousands of magnets that such small terms can be important. This
also makes theoretical analysis of the nonlinear effects especially difficult.

Sextupoles are the predominant source of nonlinearity in most existing
accelerators. They are intentionally installed in order to control or correct
the machine ‘“chromaticity.” A particle having fractional momentum
excess & will be more weakly focused, g — g(1 —9), by the quadrupoles
making up the accelerator lattice. As a result there will be momentum
dependence Q(8) of the tune. The quantity dQ/dé is called the chromaticity.
Because of the previously mentioned weakening it naturally has a negative
value, which, coming from the FODO sections making up the regular arc
or arcs of the accelerator, is approximately — Q. The presence of “low-f”
intersection regions in storage rings can double or triple this value.

This chromaticity is typically unacceptable for two reasons. Beams of
vanishingly small momentum spread are both unachievable and, for
reasons of high current stability, undesirable. To avoid resonances (see
below) the spread of tunes must be kept small and this requires that dQ/dd
be held near zero. Actually, to suppress the “head-tail effect,” a particular
current-dependent effect, dQ/dé must be held somewhat positive.

. Fortunately, the momentum offset J leads to a spatial offset owing to
the lattice ““dispersion” #(s). A higher momentum particle follows an orbit
that is systematically at a larger radius. The outward displacement is
symbolized by #8. If the accelerator were constructed entirely out of the
FODO cells of Figure 1, the dispersion n(peak) at the ends of the cell
would be given by

n(peak) = (Af/1g*)(1+1q/2). 29.

A sextupole of strength g/n, if superimposed on a regular arc quadrupole
of strength ¢, will render that quadrupole achromatic, as can be seen by
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extracting the coefficient of x§ in the expression for the deflection in the
quadrupole-sextupole combination, which is

Ax" 2z q(1-0)x+(g/2n) (x +3d)>. 30.

Effectively, the off-momentum particle, by virtue of its displacement no
feels.a quadrupole field stronger by just that factor needed to compensate;
for its increased inertia. In practice the sextupole may be somewhat
stronger than this to compensate for chromaticity introduced elsewhere in
the ring. :

One beneﬁcial application of nonlinear elements has been described, but
othem1§e their effects are mainly bad because they degrade beam qu;llit
by diluting thf; density of particles in phase space. According to Liouville’z
Fheorem, equivalent to Equation 28b for linear systems, and true also
in the': presence of nonlinearities, the microscopic phase s’pace density is
invariant. But owing to “filamentation” (4a), caused by nonlinearities, the
Macroscopic or average phase space density may be reduced. This is
e§pec1ally serious during beam manipulations such as injection or extrac-
tion. Even with steady conditions, particle oscillation amplitudes can
Increase to such large values, normally because of some resonance phenom-
enon, that some or all of the particles are lost.

3. LATTICE WITH ONE NONLINEAR ELEMENT
3.1 Transfer Map and Difference Equation

So fz'lr the discussion has been restricted to particles having betatron
jclmphtudes small enough to justify dropping quadratic and higher powers
in the multipole expansion, Equation 1. For larger amplitudes at least
some of these terms must be retained. When the equation of betatron
motion (Equation 15) is appropriately generalized, it becomes nonlinear
and, as a result, much harder to solve. Some, but not all, of the difficulties
can be illustrated by analyzing a system with one thin nonlinear element
1n an otherwise linear lattice. This example, which can be solved exactly
for modest amplitudes, is addressed next.

It 1s known (6-8) that any conservative dynamical system with two
degrees of freedom can, using Poincaré surfaces-of-section (defined below)
be reduced tq a transfer map such as Equation 12 as regards small deviation,
froma repetitive motion, and to a generalized nonlinear transfer map for
larger amplitudes. Problems falling into this category include the three-
body problem of astronomy (9), satellite orbits (10) and oscillations an
afld. magnetically trapped particles (12, 13). Hénon (14) has plausibl):
distilled all such maps down to a unique simplest nontrivial form, and
studied that map both theoretically and numerically. It had previ’ously
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been studied (15, 16), but this work was not particularly influential in
accelerator physics, perhaps because it was too specialized. Here, following
anindependent development (17, 18), we specialize appropriately to obtain
equations of Hénon’s form so that we can use his results directly.

An observer stationed at a fixed point in an accelerator observing one-
dimensional (say horizontal) motion can plot the phase space point x,, x|
for successive turns #, to make a Poincaré plot. The symbol 7 has been
chosen because the turn number is a kind of quantized time, with the time
unit being the revolution period in an accelerator. It will, however, always
be an integer. Suppose that there is a nonlinear element situated at the
observation point administering a deflection Ax’ that acts half before and
half after that point. Propagation around the rest of the ring is described
by Equation 27. Combining, the turn-to-turn propagation is described bv

( x _(C0+ocSo BS, ( x > 31
X —AX'[2)i1 -\ —9Se Co—aS,) \x +Ax'/2)] ’

\ N

which gives the state vector on the (z+ 1)st passage, and where we have
abbreviated

Co=cospg; Sy=sinyy; C=cospu etc. 32.

In what follows C; will emerge as a more convenient variable than u,. The
subscript 0 has been added to u so that it will be notationally possible to
distinguish between u,, the unperturbed value, and g, which includes any
frequency shift for which the perturbation is responsible.

For reasons discussed below Ax; is assumed to be a function only of x,.
Equation 31 is a nonlinear transfer map or, in other words, two coupled
first-order difference equations in the two variables x, and x;. An equivalent
second-order difference equation in the one unknown x, can be obtained.
To eliminate x}, write the equation analogous to Equation 31 but express-
ing the time-reversed propagation from ¢ to t— 1. Adding this to Equation
31 yields

x,+1—2C0x,+x,,, = ﬁSOAx: 33,
Further algebraic manipulation yields the formula

Xip1— X, —2aSox,

285,

by which the slope can be found once the position is known.
Using Equation 1 we now write an explicit formula for Ax;:

Ax; = box2+bix}, 3s.

where the first term yields the Hénon map. One further term is retained

’

X, = 34,
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toillustrate a respect in which the Hénon map is not typical of all linearities.
In order to obtain precisely the Hénon map one takes

a=0; B=1; by=1; b,=0. 36.

Much of this specialization results merely from choosing units such that

2B% = 1. One is left with a two-dimensional quadratic map depending on
one parameter, yo, Which in our context is called 2z times the tune. Typical
results from Hénon are shown in Figure 2. These are Poincaré maps for

septum

0 x 1 i ’ 0 x
Figure 2 Numerical results from Hénon (14) from iterating his map. (a) Q, = 0.324, close
to 1/3. About ten chaotic large amplitude points have been removed from this plot to
avoid confusion in the discussion of resonant extraction, (b) Qo = 0.2516, close to 1/4. (c)
Qo = 0.211, close to 1/5. (d) Q, = 0.185, close to 1/6.
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Figure 3 Synopsis of Hénon’s numerical maps, showing the dependence on tune of region
I (shaded), region 1I (black), and region I (blank).

particular tune values. There are several more such plots in the original
paper. Three qualitatively different types of motion are observed, cor-
responding to regions of parameter space that can be labelled I, II, and
M1, nearly (but not completely) in order of ascending amplitude. The
qualitative features are that for all time the points either

I. lie on regular closed smooth curves;
II. lie on islands, jumping from island to island on successive turns; or
III. follow chaotic trajectories, jumping around erratically and sometimes
diverging eventually to infinity.

These features will be referred to repeatedly. The way the regions change
as the tune Q, is varied is shown in Figure 3. Regions of type I are indicated
by shaded, type II by black, and type III by blank regions. In this plot it
is w, the distance from the origin along the axis of symmetry of the map,
that is used to characterize the particle amplitude; it is plotted as the
vertical coordinate. Acceptable accelerator operation would be anticipated
in region I, and possibly in region 1I.

3.2 lteration to an Exact Solution

Features of this and other maps can be inferred by analysis of the more
general map (Equation 33). By judicious choice of the starting label the
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general unperturbed motion can be written

X, = a cos tu t=0,1,2,'..., 37.
where
U= U, 38.

which satisfies Equation 33 with b} = b5 = 0. To allow for a possible
frequency shift due to the perturbation, Equation 33 can be rewritten as

x,+1—2Cx,+x,_.1 = ﬂSoAx;"'z(Co—C)x, 39.

Here a term proportional to x,, which could have been incorporated
on the left-hand side of the equation, has instead been inctuded in the
perturbation, i.e. the right-hand side.

To begin an iterative scheme, Ax; on the right side of Equation 39 can
be approximated by substitution of Equation 37 into Equation 35. Since
this is a function of cos ¢u it can be expanded in a Fourier series of terms
cos rtu, where r is an integer. The right side of Equation 39 becomes

v BSea’hs/2+[3BSea’hs/4+2(Cy— C)al cos tp

40.
+ BSoa’b’/2 cos 2tu+ fSybha’/4 cos 3ip.

Similar expansions will be possible in subsequent iterations, with yu not
equal to u, in general. The equation to be solved at each stage is
N
Xp1—2Cx,+x,_, =) ¢, cos rty, 41.
r=90
where ¢,, r = 0,1,..., N are known coefficients. Equation 40 terminates
after a few terms, but for some perturbations it will be necessary to truncate
the series after a “‘sufficiently large” number N of terms. Numerically, the
coefficients ¢, can be determined by straightforward application of stan-
dard fast Fourier transform (FFT) routines. (In a more general for-
mulation terms sin rzu would also appear.)
It is natural to seek a solution of Equation 41 as a similar series

N
x,= Y acosrty t=0,1,2.... 42.
r=0
The coefficient a, can be regarded as the “response” to the “drive’” ¢,. It
is given directly by
2
. L T 43.
COS rit—cos u

as can be checked using standard trigonometric formulae. Of these equa-
tions, the one with r = 1 clearly requires special treatment as the denomi-
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nator vanishes identically. This difficulty is related to the problem of
“secular’ terms in ordinary oscillators, and the remedy, formulated in that
case by Linstedt (18a), is to adjust the fundamental frequency to make c,
vanish. From Equation 40 this yields a formula from which the perturbed
tune can be extracted

C = Co—(3/8)BS,a’bs. 44.

Having obtained the coefficients a,, Equation 42 can be regarded as an
improvement upon Equation 37. It can be used to obtain an improved
Fourier expansion of the perturbation (using FFTs as already stated).

An iterative loop has been described which, barring unforeseen com-
plications, will “converge” to the exact solution. The scheme works for
any perturbation, and it is straightforward to incorporate vertical and
longitudinal oscillations. In region I the scheme proves numerically to be
very accurate. Since this is the region actually populated by most particles
in an accelerator, the method is very practical. However, much of modern
analysis amounts to studying failure of this convergence.

Returning to our special perturbation Equation 35 and referring to
Equation 44, we can see that the quadratic term yields no frequency shift
in the lowest approximation. This is the untypical feature of the Hénon
map mentioned previously. In practice, and speaking loosely, this makes
the quadratic term especially damaging since “detuning” of the frequency
with increasing amplitude tends to have a “stabilizing” influence, due to
loss of synchronism. It can also be said that the absence of this term occurs
because the decrease in frequency for positive x, where the “restoring
force” is weaker, is compensated by the increase for negative x, where it
is stronger. Proceeding for one more iteration an improved formula for
the tune is obtained,

(ﬂSoba)z( 2 1 )
o - , 4s.
C=Co-ORBSw™s+ = —\7-c+ 52,6

4. RESONANCE
4.1 Conditions for Resonance

Of the above-mentioned “unforeseen complications” the most important
relates to the vanishing of the denominator in Equation 43. For our
example, corresponding denominators appear in Equation 45. In Figure
3 it can be seen that the stable region vanishes for @ = 0 and Q = 1/3,
which relate respectively to the vanishing of the two denominator factors
of Equation 45. These are the so-called integer and 1/3-integer resonances.
Since the former resonance is already present in the linear theory, it is the
latter that is characteristic of nonlinearity, and in particular, sextupoles.
This resonance is dominant in Figure 2a. We return to it below.
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To aid in contemplation of the possible vanishing of the denominator
expression in Equation 43, it is rewritten as

cosrp—cos u = —2sin{(r+ Dy/2] sin {(r— Dy/2], 46.
which vanishes if
pr=(r+p/2 = ny/2, 47.

where p is any integer and the integer r + 1 has been renamed #; in other
words if

Q = pu/2r) = p/n. 48.

Since p and n can take on any integer values there can be a resonance
arbitrarily close to any tune; this makes the convergence of our series at
least questionable. According to the theory of Kolmogorov, Arnold &
Moser (KAM) (15, 16, 19), convergence is assured for some, but not all,
sufficiently small amplitudes. In other words it is guaranteed that region I
is not vanishingly small. In this region most points lie on regular “KAM
curves.” For small amplitudes the truncated series in Equation 42 gives
an accurate description of the motion—with Equation 34 it can be regarded
as the equation of the KAM curve. This is typical behavior in region I,
but even in this region there are initial conditions that lead to chaotic
motion not describable by Equation 42. Such solutions can be inferred to
be “unimportant” or “improbable” in region I because, with the granu-
larity of Hénon’s study, none were detected.

For sufficiently large perturbation strength, Equation 42 is not valid
and the motion is chaotic or divergent. This is Hénon’s region IIL. It is
unacceptable for accelerator operation because the particles go to
sufficiently large amplitude that they are lost. Of some interest is the
problem of finding the largest regular KAM curve, as that defines the
*“dynamic aperture” inside which accelerator operation is at least poten-
tially possible. The outermost smooth curves in Figure 2 are approximately
such curves.

In region II the tune locks onto a resonance value that causes the island
structure. (By tune here we mean average tune; after a sufficient number
of turns the state vector has, on average, made p revolutions in phase space
every n steps.) In this region the qualitative motion of two particles of the
same initial amplitude but different initial phases can be different, as is
discussed below in this section and in Section 6.

4.2 Resonant Extraction

To understand resonant extraction (20-24) one need only look at Figure
2a. Since the tune is close to 1/3, the final denominator factor in Equation
45 is small, as already discussed. By adjusting the tune, the accelerator
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AMPLITUDE
GROWTH

Figure 4 Phase space plot showing the tune being puiled onto the 1/3-integer resonance.

operator can make the stable region I as small as desired. Particles outside
this region proceed to large amplitude. Sketched on the figure is a septum
magnet needed to complete a controlled extraction of the beam. Any
particle jumping over the septum finds itself in a new environment, i.e. an
extraction beam line. Note that the particles do not proceed isotropically
to large amplitude in phase space—that would violate Liouville’s theorem,
and would not give an acceptable external beam. They proceed close to a
one-dimensional curve called a separatrix. In Figure 2a there are three
such separatrices, and each particle jumps from one to the next on suc-
cessive turns. Figure 4 indicates the progress of the state vector for three
successive turns. Between impulses the state vector travels on a circle. This
will clearly be valid if K(s) in Equation 15 is constant, and can in any
event be achieved by judicious transformation (2). The kicks pull the tune
“exactly” onto 1/3, and their nonlinear nature causes the length of the
state vector, invariant in the linear approximation, to vary.

4.3 Expansion About Fixed Points

Having seen that operation close to a resonance may be desirable and/or
unavoidable, it is worthwhile setting up a prescription, a variant of “‘secular
perturbation theory,” capable of treating that case. We analyze behavior
near the 1/3 integer resonance, as in Figure 2a. The points labelled 75, /35,
and I, are fixed points of the cube of the map Equation 31, for which the
tune Q = u/(2n) has been shifted by the perturbation to be exactly 1/3.
For Q, = 1/3 these points would coalesce into a single point, labelled 7,,
which is also the origin. We introduce a small frequency deviation Ap;
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defined by
3Apu; = 3uy—2n. 49,

The linear part of the cubed map is given by

( cos3u, sin 3;10) N ( 1 3Aps

—sin3u, cos3u,/ | \—3Au, 1) 50.
Dropping all terms beyond quadratic in x and x” and beyond linear in Ay,
and b5 the cubed map becomes

2

X3 R X+3Apusx’ + b5 Y — S (Cex+ Spx’)’

k=0

51
5 , .
xy & —=3Apsx+x"+b5 Y, Co(Cex + Spx’)?,
k=0
where
Sy =sink2zn/3 = —sin(3—k)2n/3 ' 52.
C, = cosk2n/3 = cos (3 —k)2n/3. 53.

Each term in the summation represents linear propagation for k turns (to
get the amplitude needed for substitution into Equation 35 to calculate
the kth deflection) and then propagation of the resulting sine-like trajectory
for the remaining 3 — & turns. In this approximation it is easy to incorporate
any number of sextupoles, label 4, of strength #(4), at arbitrary locations
in the accelerator, specified by the betatron phase y(A4). To do this (17,

18) the phases in Equations 52 and 53 would be shifted by y/(4) and
Equation 51 would also be summed over A4.

4.4 Introduction of the Resonant Invariant

After three turns a starting state vector x, x’ will be shifted by the small
quantities ox, 6x” given by

’

Ox=x3—x; Ox =x3—x. 54,
Equation 51 can be expressed in “discrete Hamiltonian’ form

ox = 30H/ox 55.

ox" = —30H/dx, 56.

where the function H(x, x), also called the resonant invariant, is given by

3H(x,x') = BAp;/2) (x* +x2) = (b3/3) Y (Cex + Sex'). 57.




304 PEGGS & TALMAN

In this formalism the difference operator § takes the place of d/d¢, since
time is replaced by the discrete time index ¢. Factors of three have been
inserted artificially into Equations 55-57, corresponding to letting the unit
of time be the revolution time. Apart from certain theoretical virtues of a
Hamiltonian treatment (see below), the main benefit is that H(x, x’) is a
constant of the motion. This follows from

6H ~ (0H|dx)8x + (0H/0x')5x" = 0. s8.

In the regular mechanics of a particle having coordinate ¢ and momentum
D, the equation of energy conservation, H(q,p) = E, gives a relation
between ¢ and p, independent of time. In the same way,

H(x,x") = H, = constant : 59.

gives a relation between x and x’ independent of ¢, which in our example,
performing the sum in Equation 57, becomes

(Aps/2)(x2+x"2) — (by/12) (x* = 3xx'2) = H,. 60.

This resonant invariant can be regarded as the equation satisfied by the
various curves in Figure 24, both stable (drawn continuous) and unstable
(dotted). The three fixed points I, I5,, and I, are found by solving the
equations

0H[0x = 0H[ox" = 0. 61.

An especially instructive procedure is to factorize Equation 60 according
to

—12H,/b5+(1/2)(4Aps/b%)°
= (x4 /3% = 4Aus[b3) (x — /3% — 43 /b3) (x + 2A14/b%). 62.

Each factor on the right-hand side, when set to zero, gives the equation of
a straight line. Their intersections are at the fixed points. Points inside this
triangle are stable; points outside are unstable. This is obvious from
Hénon’s numerical analysis and it can be demonstrated using the equations
in this section. For example, by expanding about, say, I, it can be seen
to be an unstable fixed point since Equation 60 becomes hyperbolic there.
Note that I, is stable since Equation 60 is elliptic (actually circular) there.
The extensions of the sides of the triangle are the separatrices along
which the particles leave. The importance of having left out higher order
terms in Equation 51 can be judged by the curvature exhibited by the
actual exiting particles in Figure 2a. Also the stable fixed points I3, Is,,
and [, present numerically, are missing in this analytic approximation.
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4.5 Islands and the ““Standard Map”’

The iterated map of Figure 2c¢ exhibits a well-defined chain of five islands.
The reason for the number 5 is presumably that the tune 0, is close to
1/5. Since such island chains play an important role in accelerator theories
(25-28), it is worth studying them for our simple map. Consider, for
example, the 4-island structure of Figure 25 for which Q, is close to 1/4.
Suppose that, instead of the Hénon map (b, # 0, b5 = 0, in Equation 35),
one were studying the case b, = 0, b # 0. In Equations 40 and 41 the
dominant coefficient in lowest order would have r = 3, leading to res-
onance near Qo = 1/(3+1) = 1/4. (In accelerator jargon, octupoles cause
1/4-integer resonances.) But Hénon’s numerical results leave no doubt that
a single sextupole can also cause 4 islands (also 5, 6, 7, Or, one supposes,
any number of islands) depending on the value of Qy. In the iterative
scheme of Section 3.2 such resonances would appear in higher than first
order, with strength proportional to quadratic or higher powers of b, If
both b’ and b were nonvanishing it would be unclear, without quantitative
analysis, whether the islands were due to b’ in lowest order, or b} in higher
order, or both. For general nonlinearities the ambiguity is worse, since
any term in Equation 6 can be responsible for any island chain.

A related comment can be made about a truncated series such as Equa-
tion 51. As stated previously, even the presence of many sextupoles 4
can be handled by extending the summation over them, provided that only
terms linear in b%(A) are to be retained. The resulting resonant invariant,
like Equation 60, will be a cubic function of x and x’, subject to fac-
torization as in Equation 62. Such a form is clearly incapable of describing
more than three islands. In short, truncated formulae cannot be expected
to reproduce the island structure.

The island-chain feature of Figure 2¢, with stable and unstable fixed
points alternating at equal intervals on an approximate circle, is typical of
many maps. Were the circle to be stretched out in a straight line, the phase
Space structure would resemble that of the simple pendulum. (A 6-island
example is shown in Figure 7a.) Exploiting this analogy, such circular
island chains can be described by the so-called standard mapping (19).
Here we sketch heuristically how such a mapping can be obtained using
the methods of Sections 4.3 and 4.4, and later, in Section 6, apply it to the
beam-beam problem.

Instead of coordinates x, x” the state vector can be specified by action-
angle variables J and ¢ ; they are related by

x = /2 cos (¢ + ¢y) 63.
X = —/2Jsin(¢+ py). 64.
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The variables \/Zl, ¢ will be polar coordinates in the phase space of the
5-times iterated map, since we will concentrate on the case of Figure 2¢.
For the Hamiltonian representation (Equations 55 and 56) of the difference
equations (Equation 54) the usual rules for manipulating Hamiltonians
are valid. We must then, in Equation 57, substitute for x and x’ using
Equations 63 and 64. At the same time we must retain terms quadratic in
b’ if we hope to have 5 islands, and the summation must run from 0 to 5.

The purpose in studying the S5-times iterated map is to “freeze” the
motion approximately. An alternative and more common approach is to
describe the motion using a rotation frame of reference in phase space. To
accomplish this we introduce a “slow phase”™ y, defined by

¥ =¢—2n11/5(= ¢—2ntp/n). 65.

We analyze the one-turn map from here on, corresponding to ¢ being an
integer and increasing by 1. To the extent that Figure 2¢ has 5-fold circular
symmetry it will look as before, but now a particle stays always on the
same island.

Analogously to Equation 49, we introduce the frequency deviation from
resonance

Ap = po—2n1/5(= po—2np/n), 66.
or, expressed as a tune,
AQ = Qo—1/5(= Qo—p/n). 67.

To give the pattern observed in Figure 2¢ the resonant invariant must
take the approximate form

H(Y,J)/2n) = AQJ+ EV,(J) cos ny + EU(J). 68.

Here, for later use, we have generalized the notation to a resonance with
n islands, but for now » is equal to 5. The parameter &, to be defined later,
can for now be regarded as a small expansion parameter. The first term
can be derived as in Equation 60. The functions V,(J) and U(J) are called
in Section 6 the resonance strength function and the amplitude detuning
function respectively. We could also have expected to have terms with
periodic angular dependence other than 5. In fact the island chain of
Figure 2¢ is not quite circular, which would require the presence of such
terms, but we ignore that complication. In idealizations of more com-
plicated systems, a Hamiltonian of this form sometimes is declared to be
the result of averaging over “fast” variables, whose frequencies are not
commensurate with the resonance frequency. The locations of the fixed
points of the mapping are determined by solving the equations

OH/3J,;, = OHJoy), = 0, 69.
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where the action coordinate of these fixed points is J,. Instead of J we now
use AJ, the deviation from J,

A =J-T, 70.

as the action variable. Using Equation 69 and dropping constant terms,
the Hamiltonian becomes

H,A)|(2n) = EV,(J,) cos iy + EU"(J,)AT?/2 71.
Hamilton’s equations are then given by

O0AJ = —3H[dY = 2rnéV,(J,) sinmy 72.

oY = dH[OAT = 2rEU"(J,)AJ. 73.

Except for constant factors, this is known as the “standard mapping.” The
motion in phase space is the same as that of a pendulum, even for large
amplitudes. “Newton’s second law” is obtained by “differentiating” Equa-
tion 73 and substituting from Equation 72

8% = 2nEU"(J,)5AJ = m)*nE2V,(J,)U"(J,) sin my. 74.

The “frequency” of small oscillations is &| U"(J,) V,(J,)|V2 The half-width
of the island-chain, AJ,, can be obtained from the separatrix trajectory ;
this is analogous to the pendulum motion, which just stops short of going
past the position of unstable equilibrium. At that point, where the “energy”
is entirely “potential,” H(/,AJ) can be evaluated; it yields EV,(J,) as the
“energy.” The maximum “‘momentum’ occurs at the position of stable
equilibrium, ¢ = 0, where the “potential energy” has been reversed and
yields

AJ,(half-width) = 2| V,(J,)/U"(J,)| "2 s

as the island half-width. This can also be used to define a kind of “range
of applicability” of the Hamiltonian, Equation 68, running from J, — AJ,
to J,+AJ,.

5. SPECIALIZED TOPICS

5.1 Nearly Linear Description: Distortion Functions

We have seen, in Section 2.2, that judicious transformation of the variables
can force the formula describing betatron motion to be identical to that
for simple harmonic motion. The transformations required were changing
the independent variable (Equation 22) and factoring out the s-dependent
modulating factor \/ﬁTs) What is left in Equation 18 are the arbitrary,
but constant, phase i (s;) and amplitude a. Note that the meaning of ¥ in
this section is not the same as in the last section. The idea of distortion
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functions is to account approximately for extra perturbing effects by allow-
ing a and Y (s,) to be distorted by the addition of small s-dependent terms
da(s) and 8y (s). To first order in the strength of the nonlinear perturbation,
then, the motion is described by

x(s) = [a+da(s)]\/ B(s) cos [ () — Y (s1) + 0Y (5)). 76.

Much in the way the differential equation (Equation 20) satisfied by f(s)
was found, differential equations can be found for da(s) and Sy (s) that
permit x(s), as given by Equation 76, to satisfy Equation 15 with extra
perturbing terms present. To be useful, da(s) and Sy(s) are assumed, like
B(s), to be periodic, as in Equation 26, and they must be expressible in
terms of functions independent of a. Functions having all these properties
are said to be lattice functions.

Before specifying these distortion functions more explicitly, we make a
short historical digression. Transformations like these are by no means
original in accelerator physics. In celestial mechanics the method is known
as “variation of the elements” where, for planetary orbits, the orbit
elements are constants of the unperturbed motion such as major axis a,
orientation of the ellipse axis ¥, and four others. (The symbols have been
intentionally chosen to be ambiguous so that the formulae will apply to
our actual problem.) A perturbing potential R[x(a, ¥), z, . . .] causes motion
that can be described by allowing a, ), ... to vary with time according to
the differential equations

{a,a}a+{a,y}y+ ... = OR/0a
{V.aa+{yy}i+ ... = 0R/oy 7.

ctc.

The coefficients are Lagrange brackets, which can be shown to be constants
of the unperturbed motion. As a result, the equations can be written by
matrix inversion in the more convenient form

a = [a, a]{OR/0a) +[a, Y]{OR/OY> . . .

¥ = [V, a]<OR/0ay+ [y, Y1<OR/BY . .. 78.

etc.

These coefficients are the Poisson brackets, which are an important in-
gredient of the Lie algebraic methods discussed briefly below. In writing

Equation 78, an extra step was performed for the sake of brevity. The -

right-hand sides have been averaged over one complete period of the
unperturbed motion. Such averaging (characteristic of the Krylov-
Bogoliubov method discussed below, and other methods) along with the
invariance of the Poisson brackets, causes the right-hand sides of
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Equation 78 to be independent of x,z,.... This permits a, ¥,... to be
found by direct integration. These equations are called the Lagrange
planetary equations (they are 200 years old.)

In the accelerator physics context, distortion functions have been derived
independently by various authors. They were used in the design of the
storage ring CESR (17), derived using difference equations, and later (29),
when the term distortion function was coined, derived by ad hoc methods.
They have been derived using Hamiltonian methods (30) and Lie algebra
(31), and the equivalence of different representations has been dem-
onstrated (32).

The idea of distortion functions can be illustrated using the Hénon map
and formulae of Section 3. To lowest order in 4% the motion is given by

X, = agtacostu+a,costpy, t=0,1,2,..., 79.

where the procedure for finding a, and a, has already been given. They
are proportional to a®. The slope is given by substitution into Equation
34. The quantity (x7+ x;%)"/? is an invariant of the unperturbed motion as
well as being the distance from the origin in the phase space plots of Figure
2. Because of the perturbation, it is not invariant and the phase space
trajectory is not circular. The perturbed invariant is a, the coefficient of
the term varying as cos tu. This can be obtained by Fourier projection, or
if one insists on generating a circular phase space plot, by subtracting the
known perturbing terms from x, and x, before plotting them. This will
yield a circle for modest amplitudes, although the description will begin
to deteriorate as higher harmonics become important.

The presence of many sextupoles can be accounted for as described
after Equation 53. For the most general distribution of sextupoles the
coefficients a4 and a, can be written in terms of four quantities

(4,B) =} BAUDBA] " [sin g (A), cos Y (A)] 80.
(43, By) = Y bo(A)[B(A))*[sin 3y (4), cos 3y(4)]. 8L.

These are the desired distortion functions. They form pairs that behave
like ““phasors.” In regions with no sextupoles, the phasor (4,, B 1) rotates,
with the phase advancing at the same rate as betatron oscillations, while
(43, B;) rotates at three times that rate. For coupled motion other dis-
tortion functions such as

S AV BABA) | V(A () 2.

are needed for a similar description.
With enough correction sextupoles, it is possible to adjust all these
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distortion functions to zero. When that is done, then, according to Equ-
ation 79 and to lowest order only, the phase space trajectory becomes a
perfect circle. As explained at the end of Section 3.2, it is necessary to go
to the next order (quadratic in b3) to obtain the tune shift caused by
sextupoles. By straightforward generalization of Equation 45 the tune shift
can be written in terms of the distortion functions.

5.2 Hamiltonian Methods, Stochasticity, and

Long-Term Stability

It is typical for a high energy particle to circulate for many hours in a
storage ring, performing tens of betatron oscillations every turn, with each
turn taking some microseconds. That makes some 10'! oscillations. It is
a formidable challenge to make any statement that remains valid after that
many cycles. Nor are such questions of purely academic interest, as the
difference between a ten-minute and a one-hour lifetime can spell the
difference between success and failure. The only formalism with sufficient
mathematical discipline to have any reasonable expectation of succeeding
is the Hamiltonian (or, as one says, the canonical) approach.

A common theme in this research has been to simplify an otherwise
intractable problem and then to re-express it in Hamiltonian form, for
which strong statements about stochasticity and long-term stability can be
made. This amounts to redefining (some might say emasculating) rather
than “solving” the original problem, as far as mathematical rigor is con-
cerned, but it constitutes reasonable “physics.” An example of this was
given in Section 4.4 and others are mentioned below. Reference (33)
contains much material on long-term stability.

Hamiltonian methods have also been useful in analyzing more mundane
situations in which description of the behavior over a more modest number
of cycles, perhaps a hundred or a thousand, is required (34-36).

Hamiltonian perturbation techniques proceed by finding canonical
transformations that make the Hamiltonian approximately time inde-
pendent. This follows a tradition of Hamilton-Jacobi, Poincaré, and Birk-
hoff. The most essential difference between these methods and those
emphasized in this paper is the difference between series expansion and
iteration. In series methods, functions are expanded in Fourier series
based on the unperturbed period ; in iteration, such series are based on a
perturbed period.

5.3 Particle Tracking and Symplectification

When one attempts to “improve” a transfer map like Equation 31 to
account for the effect of finite magnet thickness, it is not automatic for
symplecticity to be preserved.

(Symplecticity is a concrete mathematical attribute of a map that is
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present if and only if the theory is canonical. A necessary condition is that
the determinant of the linearized part of the map be 1. For example, this
is satisfied by Equation 31 but not by Equation 51.)

There is a standard “TRANSPORT” formalism (37) for representing a
section of an accelerator by a quadratic map like Equation 51. The whole
lattice can be described by concatenating such maps. Though the resulting
map may be quite accurate for a few turns, the long-term behavior will be
ruined because the map is not symplectic. One popular, if suspect, pro-
cedure is to allow blemishes to develop while making approximations, but
then to “paint over them” by resymplectifying. This is easy for the linear
part of the map (37a), but a quadratic map will inevitably be nonsym-
plectic. Apart from going to higher order, which only delays and com-
pounds the problem, the only solution is to find an implicitly defined map
that agrees with the quadratic map to quadratic order (38, 39). To track
a particle it is then necessary to invert numerically the implicit function
relating the state vector before and after each turn.

Instead of using approximate formulae to perform tracking through
“exact” (i.e. thick) elements, it is possible to perform exact tracking
through approximate (i.e. thin) elements. The approximation can be
improved by breaking thick elements into several thin elements. Long-
term precision in such a program is only compromised by round-off error
in the computer. Being exact, such a calculation is necessarily globally
symplectic, though it is not locally symplectic (unless extended to six
dimensions). A program called TEAPOT uses this method (40).

5.4 Lie Algebraic Methods

Several of the features mentioned are most elegantly handled by Lie
algebraic methods. These include () concatenation of nonlinear maps, (b)
systematic treatment of higher order perturbation theory, (c) preservation
of symplecticity after truncation, and (d) distortion functions. These
methods are applied in celestial mechanics (41), and they have been
developed for accelerators by Dragt (42) and his coworkers (38, 39) in the
computer program MARYLIE. Here we give only the general idea.
Hamilton’s equations can be written in Poisson bracket form

da/dt = —{H,a]= —:Ha 83.

where, to simplify the formulae, the Hamiltonian will be assumed to have
no explicit time dependence. The state vector a is made up of coordinates
and momenta that are invariants of the unperturbed motion. The close
analogy to Equation 78 should be noted. The symbol :H: is just a notation
expressing the Poisson bracket relation as an operator, as defined by
Equation 83.

The evolution of the state vector from its initial value a(t,) to its value




312 PEGGS & TALMAN

at time ¢ is given by

a(?t) = (1 —J :H:dt’+J :H: dt’J‘ ‘H:dt"— > a(ty) 84.
to<t to<t' <t ty<t <t

as can be checked by substitution into Equation 83. This time evolution
can also be represented by a transfer map

a() = M, to)a(ty). 85.

Taken together, and with proper attention to noncommuting operators,
these yield

M(t, ty) = exp(—f H: dt'). 86.

This is purely formal since the operator :H: appearing in the various
'integrands depends implicitly on ¢ through its dependence on the co-
ordinates and momenta. However, these formulae lend themselves to
solution using a series of powers of the time. . '

The map in Equation 86 is a Lie transformation. That is to say, it has
the form

M =exp(:f2), 87.

where f(a) is any function. The key theorem says that any such.map is
symplectic. To exploit this, a sophisticated calculus for approximating
transfer maps in the form of Equation 87 has been developed (4;).. Th-e
four features listed above follow naturally. In particular, symplecticity is
preserved in succeeding orders of approximation. . .

When the Lie method is applied to a simple system like a gravity
pendulum (8), the results are disappointing. The desc.ription qf small
amplitudes is excellent but, for a given precision, the slow increase in range
of applicability in proceeding from order to order does nf)t seem to justify
the effort. An extreme position on high-order perturbation methods was
stated by Taf (43): “Beyond first-order results I know of no useful result
from perturbation theory in celestial mechanics . - ..” Tl}ese contra-
indications probably do not apply to accelerator apphcatxons.m the nearly
linear regime. They certainly do not apply to the common circumstance,
e.g. Equation 45, where the frequency is unshifted in lowe§t order. N§v§r—
theless, it seems that the main virtue of the Lie algebraic method is its
systematic handling of the distortion functions.

5.5 Superconvergence

There is a procedure (44, 45) by which the slow convergence, lamenteq n
the previous section, can be speeded up. This is of considerable theoretical

NONLINEAR ACCELERATOR PHYSICS 313

importance and might be said to be the main ingredient of the so-called
KAM theory. So far, however, such methods appear to have had little
practical impact, perhaps because of their complexity.

5.6 Krylov-Bogoliubov Methods

Some physicists find the canonical methods too formal and poorly motiv-
ated. The averaging methods of Krylov and Bogoliubov (46) form a
powerful and, some would say, a more physical alternative.

6. THE BEAM-BEAM PROBLEM
6.1 Introduction

In the simplest type of colliding storage ring, each of two counter-rotating
beams circulating in a purely magnetic guide field contains a single bunch,
with a population of order 10'° particles, which remains virtually intact,
one hopes, for several hours. The bunch in one beam contains electrons
or protons, while the other beam contains positrons or antiprotons. In the
absence of electric fields the particle and antiparticle bunches follow the
same trajectories in opposite directions, so that they pass through each
other at two diametrically opposed points, where experimental high energy
physics detectors are located. On comparatively rare occasions hard par-
ticle-antiparticle collisions are observed in the detectors, but for the most
part the tenuous beams pass right through each other. In all the “weak-
strong” models of the beam-beam interaction described below, a single
test particle in one bunch collides softly, only once per turn, with the
macroscopic electromagnetic fields caused by the other bunch. We first
consider betatron motion restricted to a single transverse dimension, the
horizontal. In Section 6.5, simultaneous vertical motion is also included.
Consider a round incident bunch, Gaussian in all coordinates, with an

rms transverse size, ¢ = 6, = g,, much smaller than its length. Its charge
density distribution is given by

p(r) = (ne/2na?) exp (—r?/2c?), 88.

where r* = x2+2?, and n(s) is the number line-density along the bunch.
The total beam-beam impulse imparted during one passage through the
incident bunch to a test particle of charge —e displaced by x is

AX' = —@n/5*)(26°/x)[1 —exp (— x*207)], »

where f*, the beta function at the crossing point, is taken to be much
larger than the bunch length. In the highly relativistic limit that is assumed,
the magnetic and electrostatic beam-beam impulses are equal in magnitude
and add constructively. The strength of the total impuise has been para-
meterized by ¢, the “beam-beam tune shift parameter,” which (generalizing




314 PEGGS & TALMAN
to elliptical beams) is given by

Nr. e 9.
(21y) 0.:(0x+0)
where N is the total bunch population, r, is the classical radius of the
particle, and y is the usual relativistic factor.

For small amplitude particles, Equation 89 reduces to

Ax" = —(4ng/f*)x; X« 0. 91.

éx,z =

This is a linear perturbation, acting just like a thin focusing quadrupole.
Substituting Equation 91 into 33 and rearranging terms, it can be seen
that the effect of such a quadrupole is to shift the tune from Q, to Q; their
relation being

cos (2nQ) = cos(2nQy) — 2né sin (2nQ,). 92.

This confirms that the tune shift for small amplitude particles is in fact £,
and that they will be stable. Large amplitude particles, with x » ¢ for most
of their interactions, experience impulses that drop off like 1/x, so that
they also tend to be stable, with tune shifts approaching zero. This is in
contrast with the nonlinearities discussed above, from magnets, where the
tune shift increases with amplitude, and amplitudes above some dynamic
aperture are lost. These differences occur because the magnetic fields are
caused by current sources external to the vacuum chamber, while the
beam-beam interaction sources are localized within the incident bunch. It
1s therefore not surprising that external nonlinear correction elements are
of little use in stabilizing against the beam-beam effect.

Betatron oscillations can be described using variables J, ¢ as in Equa-
tions 63 and 64 or in terms of a normalized amplitude o :

x = (2J)"*¢ cos ¢ = ao cos ¢
x = —QRNY*c/p*)sin¢p = —ac/B*sin ¢.

It can be shown (27), that the perturbed tune of a nonresonant particle is
given by

93.

QW) = Qo +EU'(J) 94,
where
UWJ) = QINH[1—exp (—J/2)I,(J/2)]. 95';

Here I, is a modified Bessel function. While Equation 95 is wr.itten in terms
of J, it is natural to plot U’ in terms of «, the normalized amplitude ; Figure
Sa s such a plot.
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Electron colliders are observed to have a beam-beam tune shift limit & nax
roughly in the range 0.02 to 0.05 per collision (47), depending somewhat on
the betatron motion damping time (47a), and depending strongly on the
operating point (Q,, Q,) in the tune plane (48). The transverse distribution
of an unperturbed electron bunch is determined by a dynamic balance
between quantum emission of photons in the horizontal plane and radi-
ative damping in both transverse planes, with a characteristic damping
time of order 10* accelerator turns. This leads to a naturally flat beam,
with a relatively small vertical size ; 6, < o,. However, as the beam currents
are increased equally, both beams increase their vertical sizes substantially,
which limits the value of £, or worse, causes particle losses that reduce the
stored beam lifetime of one or both beams. An important practical electron
beam-beam problem is to understand quantitatively the resonance features
of the tune plane, in order to find the optimum operating point. The most
successful solutions to this problem rely heavily on the use of numerical
simulations (49-51). o

At the time of this writing, the only (bunched) proton beam-beam data
available are from the SPS at CERN (27), where, with six collisions of
strength £ = 0.004, resonances of order ten (i.e. n is 10 in Equation 48)
and less must be avoided in the tune plane for acceptable storage lifetimes.
One reason proton colliders are more sensitive than electron colliders to
higher order resonances is that the larger proton mass essentially stops the
proton from radiating. This makes the damping time almost infinite, with
the corollary that proton beams tend to be round and the Hamiltonian
description of round beam-beam interactions pursued below appropriate.
The proton collider operating point is forced close to the tune diagonal,
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Figure 5 Response of a test particle to a single round beam-beam collision per turn. (a)
Tune shift, AQ/¢ = dU/dJ, as a function of amplitude. (b) Resonant island half-widths for
various resonance orders as a function of amplitude, as predicted by Equations 75, 95, 97.
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0, = Q, (though the integer parts of the tunes need not be equal), where
high-order resonances are most sparse. The unperturbed tune is chosen so
that the actual tune, shifted and spread according to Equation 94, avoids
resonances for values of n less than some critical value n.. for all
amplitudes. The impossibility of finding such a resonance-free space to
accommodate a total tune spread larger than about 6£ =~ 0.024 between
tenth and lower resonances makes the SPS beam-beam limited. Thus the
most pressing proton beam-beam problem is to find the value of n;. as
a function of & and the other parameters.

6.2 The Resonant Hamiltonian and Chaos

Various workers (25, 25a, 26), following the work of Chirikov (19), showed
how to apply the results of Section 4.5 to the beam-beam problem. The
Hamiltonian that describes approximately the motion of the test particle
can be shown (27) to be

H/Qn) = (Qo—p/n) J+ EU(J) +EV,(J) cos mf 96.

as already written in Equation 68. The detuning function is now known
explicitly through Equation 95. The resonance strength function V,(J) is
given by integrating the equation

VD) = — (= 1" 4[]y exp (= J/2)2(J/2). 97.

Odd resonances are absent by symmetry, though they could be caused by
symmetry-breaking effects such as non-head-on bunch collisions.

As discussed in Section 4.5, this Hamiltonian describes motion around
a chain of resonance islands, with the island half-width given by Equation
75 and plotted in Figure 56. Note that it is independent of the strength of
the beam-beam interaction since both perturbing terms in Equation 96 are
proportional to £.

According to the Chirikov overlap criterion (19), chaotic motion is
expected if two neighboring chains of resonance islands overlap. Tech-
nically, chaotic regions of phase space are characterized by neighboring
trajectories diverging exponentially, whereas they diverge only linearly in
regular regions. As illustrated in Section 3, chaotic and regular trajectories
can usually be distinguished visually in a phase space plot, by seeing
whether or not they lie on a continuous curve. A more quantitative dis-
tinction occurs in the Fourier spectrum (see e.g. Equation 42) of the

trajectory ; it shows a finite number of peaks for regular motion and a

broad continuous spectrum for chaotic motion.

Suppose that the next important island chain has tune Q. The tune
separation @, — Q, will depend on the values of p and »n for both chains.
Using Equation 94 this separation can also be expressed as a separation
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in action

AJ,(separation) = (Q, — Q,)/[EU"(J,)] 98.

assuming that the detuning function U(J) is dominant. Combining this
with _Equatlon 75, the Chirikov criterion can be expressed as a stability
condition on the tune shift parameter ¢; it should be less than

Cmax = (@1 —@16V,(J)U"(J,)) 2. 99.

Numerical simulations support the validity of the Chirikov criterion in
this form, as a predictor of the onset of chaos, but the numerical value of
&max 18 typically greater than 0.1, which makes it more than ten times larger
than the limit actually observed in accelerators (25a, 27a). Furthermore,
what has been written does not yet really constitute a theory since the
factor Q. —Q, has not been calculated. This model will nevertheless form
the basis for a more refined theory that removes both defects. In the spirit
of resonance overlap, one should look for sources of more closely spaced
resonances, and some sort of modulation mechanism is thought to be the
most promising candidate (25, 51a). For protons the variation of tune with
momentum seems to be important, as described next.

For electrons other sources of modulation are important, though not
through resonance overlap. The effect of longitudinal crossing point oscil-
lations is described in Section 6.4. It is especially important to introduce
a second transverse coordinate for electron beams because of their ribbon-
like shape. The dominant effect is parametric modulation of vertical
motion by the horizontal motion (Section 6.5). '

6.3 Tune Modulation

One source of tune modulation is ripple in the current supplied to some
of the guide field magnets. A more fundamental source is the tune variation
accompanying energy oscillations that occurs when the chromaticity is not
exactly zero, in which case the modulation frequency is the “synchrotron”’
frequency Q,, about 0.005 in the SPS. The modulation depth ¢ might
typically be 0.001 or larger.

We suppose then, that owing to an external modulating source, the
unperturbed betatron tune is given by

0 = Q¢+gsin2nQ0,t 100.
which causes the Hamiltonian in Equation 96 to be replaced by
A2 = (Qo+qsin2nQ,t —p/n) T+ EUT) + EV,(J) cos ny, 101.

where the variables have been given bars in preparation for a canonical
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transformation using the generating function

W,J, ) = [¥+(q/Q,) cos 2nQ kt — 21 Q,t/n}J. 102.

Here £ is an integer that will be specified later. The new variables are given
by

J=0Ww/oy =J 103.
Y = 0W/[0T = Y +(q/Q,) cos 2nQt — 2nQ kt/n, 104.
and the new Hamiltonian is given by
H|(2m) = H|(2r)+(8W/dt)/(2n)
= (Qo—p/n—Qkin)J+L{U(J)
+ &V (J)cosny —2nQ .kt +(ng/Q,) cos 2nQ,t]. 105.

The final term can be expanded as a series of synchrobetatron side bands
with spacing Q,/n, as is done for frequency-modulated radio signals ; the
coeflicients are Bessel functions Ji(gn/Q,). Each of these terms can‘be
treated as an independent resonance provided that the perturbation
strength is weak enough that they do not overlap. We analyze thgm
separately, choosing the appropriate value of k for each. From Equation
104 it can be seen that this amounts to viewing each side band from an
appropriately rotating frame. We use the resulting Hamiltoniap H, only
to estimate the width of the kth side band, and as a result the signs of the
coefficients do not matter. For qualitative discussion then, the Bessel
function Ji(K) can be approximated by zero when K < k and by (nK)~'/?
otherwise. We obtain

H/(2m) = (Qo—p/n—kQ,/n)J + EUJT)+&[Q,/(ngn)]1*V () cos mp 106.
for
k < kypax = qn/Q,. 107.

Note that, as & has been chosen, the Hamiltonian is independent of time
and is hence conserved. o

This shows that only about 2k, lines in the range + g have significant
strength, corresponding to the observation that a particle will feel the
resonance strongly only if its tune is modulated across the ceptral res-
onance frequency. With the numbers given above, at least five side bands
are expected around a tenth-order resonance. .

The widths of these linescan be obtained by applying Equation 75 again.
Then the Chirikov criterion can be employed to give a threshold value &,
above which chaos is expected (27):

Emax = (1/8)(ng) Q) V(T U (I )]~ 2. 108.
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Figure 6 The critical tune shift parameter, {.,, in Equation 108 for various resonance
orders. The resonance overlap criterion predicts that chaos ensues for a single collision per
turn above this strength.

Values of &, are plotted in Figure 6 as a function of amplitude o for
various orders n. The simulation results shown in Figure 7 confirm a
sample quantitative prediction derived from Figure 6 that the onset of
chaos near a sixth-order beam-beam resonance should occur for a tune
shift parameter £, of about 0.0045. Simulation results (28) tend to sup-
port the accuracy of Equation 108, even when more than one collision per
turn and other realistic features are properly incorporated.

For the purpose of making various comments, let us now consider the
dependence on Q,, holding all other variables constant. The leading trend
is that chaos sets in sooner as 0, is reduced, because the side-band spacing
varies linearly with Q,, while according to Equations 106 and 75 the side-
band width varies as the fourth root. The fact that the critical tune shift
varies as Q* makes this mechanism less important for electrons than for
protons. For electrons Q, ~ 0.05, an order of magnitude higher than for
protons, a consequence of the high power RF accelerating system needed
to replenish energy lost by radiation. There appears to be unphysical
limiting behavior as Q, approaches zero ; chaos is always present with no
modulation. That this is not contradictory just points up the limitation of
a model that predicts the onset of chaos without calculating the resulting
diffusion rate in phase space.

Diffusion results when a particle finds itself on the “wrong” side of a
“moving separatrix.” Rates for this to occur can be estimated (25), but as
yet there is not a dynamic theory. As @, is reduced, there arise two
impediments to massive outward displacement in phase space: the time rate
of resonance crossing falls linearly, and there are more “separatrices” to
be crossed. For sufficiently low values of Q,, considerations of adiabaticity
are more useful. If a particle goes around a fundamental resonance island
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many times in the time it takes for the island to move its own width due
to the tune modulation, the particle can be expected to remain trapped
and to move with the island. This is the phenomenon of “resonance
trapping” (48). Expressing the above condition quantitatively yields a
critical frequency Q,, below which resonance trapping occurs;

O, = nC*V,(JYU"(J,)/q. 109.

This is plotted in Figure 8. For example, with the parameters & = 0.006
and g = 0.001 used in Figure 7, the modulation frequency Q, = 0.005 is
almost an order of magnitude above the critical value for resonance trap-
ping on sixth-order resonances.
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Figure 7  Simulated trajectories tracked for 2000 synchrotron periods, with Qs = 0.005, and
an unshifted tune of 0.331, near a sixth-order beam-beam resonance. The two left figures
have no tune modulation, while the two right figures have a modulation amplitude ¢ = 0.001.
The two top figures have a tune shift parameter of & = 0.0042, slightly under £, ~ 0.0045,
while the two bottom figures have a value ¢ = 0.006, slightly above £,,,. Side bands k = +1,
0, —1, and -2, visible in () at increasing amplitudes, overlap and are submerged in a
chaotic sea in (d).
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Figure 8 The critical tune modulation frequency, Qs in Equation 109 below which res-
onance trapping is expected. The parameters used correspond to those in Figures 6 and 7.

It can be observed in Figure 5a that dQ/da becomes small for large «,
a fact that, both for this and the chaotic mechanism, encourage large
excursions of the action coordinate of a particle as in Figure 7. One of
these excursions may prove to be fatal for the particle.

6.4 Longitudinal Collision Point Oscillations

Energy oscillations are also accompanied by longitudinal oscillations of
the test particle, s = a, cos (2nQ,1), relative to the bunch center ; this causes
the collision point to oscillate longitudinally with amplitude a,/2. This can
equivalently be regarded as an oscillation of the tune of the accelerator ;
the formula is obtained by differentiating Equation 22 :

Q = Q0+ (Q:as/zﬂ) Ccos 2"Qst- 110.

Furthermore, the denominator factor § varies with ¢, since its longitudinal
dependence in the vicinity of a minimum of the beta function, such as is
normal at a collision point where f = f*, is

B = B*[1+(s/p*)). 111

This follows from Equation 20. For a low-beta intersection point, typical
values of the parameters satisfy

af2 ~ o, ~ f*. 112.

In that case the depth of modulation from this source is ¢ ~ Q,, and
because of Equation 111 modulation at all odd harmonics of O, is present
(52). This is likely to be the dominant source of the tune modulation effects
analyzed in the previous section.
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For electron accelerators these longitudinal oscillations lead to another
modulation mechanism (49, Sla, 52). Accompanying the beta-function
dependence of Equation 111 is an effective dependence on s of the vertical
tune shift parameter,

&:(8) = SO [1+(s/BH)"2. 113.

For large s, the tune shift parameter becomes markedly larger. That the
affected motion is primarily vertical is due to the previously described
asymmetry of the transverse beam dimensions; optimal design has
p¥<« B%. Since there is no such effect for round beams, the dominant
resonances in electron and proton accelerators are different.

Certain colliders have nonzero crossing angles, which leads to other
resonances (51) similar to those mentioned here.

6.5 Motion in Two Transverse Dimensions

Especially when the colliding beams are not round, the description must be
extended to another transverse dimension. In that case rigorous theoretical
results are even more rare. It is known that regular KAM surfaces continue
to exist, but topologically they are incapable of isolating regions of good
behavior, such as region I described above, and regions of bad behavior,
such as region III. All the chaotic trajectories (of a fixed total Hamiltonian
“energy”) are connected together in an “Arnold web,” along which
“Arnold diffusion” takes place (19). In principle this permits a particle to
embark on grand excursions from small amplitudes to large amplitudes,
threatening the long-term stability in an unfortunate way. Fortunately,
however, the diffusion rates obtained by calculation and by simulation still
appear to be negligibly small for realistic beam-beam parameters (8, 53,
54). For round beams, two-dimensional simulations do not in general
demonstrate qualitatively different, or more sensitive, behavior than one-
dimensional simulations (28). The possibility exists, however, that dra-
matic effects remain to be uncovered by simulation, if more fully developed
theoretical models suggest the right behavior for which to look.

The vertical blow-up of flat electron beams, which occurs on the com-

paratively very rapid time scale of the radiation damping time, is well

described by the “parametric oscillator’” model of Peggs & Talman (50).
In this model the horizontal motion is taken as inexorable, acting, in effect,
as an external modulation of the parameters of the vertical motion. For
horizontal ribbon-shaped beams the vertical deflection is given, instead of
Equation 89, by

Az = —(4ng,0,/BH </ (m/2)erf [z/(0./2)] exp [— x*/(262)], 114.
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where erf is the error function. Note the factorization into the product of
two factors, each of which depends only on one coordinate. For modest
amplitudes the motion is analogous to that of a pumped pendulum, with
a small displacement z, and a small perturbation of its length at a frequency
2Q,. Such a parameterically driven linear system is well known to be self-
exciting on a family of resonances Q, = pQ,, corresponding to lines in the
tune plane (Q,, Q.). Many other such families appear when the restriction
to small amplitudes is removed.

The general motion can be accurately solved, in a two-dimensional
version of the method described in Section 3.2, by iteratively refining the
coefficients of an expansion of the vertical displacement, in a double
Fourier sum in the tunes Q, and Q,. (Again, to avoid secular terms, an
improved tune must be employed in each stage of iteration.) For small
amplitudes, an accurate description is given by a few terms, much as in
Equation 79. For larger amplitudes, resonance islands and chaos set in,
preventing convergence of the Fourier series. Such solutions agree well
with flat beam simulations (50) in predicting the critical tune shift par-
ameter and the location of dangerous resonances, when systematic scans
of the tune plane are performed. Only relatively minor changes are
observed when horizontal beam-beam interactions are also included, so
that “energy” can flow in both directions between horizontal and vertical
oscillations. This is not surprising, considering the relatively enormous
source of “‘energy” in the horizontal motion that is available for pumping
the vertical motion.

In conclusion, it is worth commenting on the role that simulations
have frequently played in understanding nonlinear effects in colliders. The
“ultimate” general simulation program, capable of reproducing all effects
simultaneously, has not been written, but neither would it be worth writing,
even ignoring the slow performance that would inevitably result. Rather,
simulations are most useful in studying individual mathematical models
in detail, with none of the approximations inevitably necessary on paper ;
or they are useful as true simulations of realistic colliders, selecting only
dominant features reasonably expected to be present. While simulations
are invaluable when properly used, they lose their value when removed
from the context of theoretical models and/or real experience.
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